世界短讯!卡方检验的计算_卡方检验具体怎么计算
想必现在有很多小伙伴对于卡方检验具体怎么计算方面的知识都比较想要了解,那么今天小好小编就为大家收集了一些关于卡方检验具体怎么计算方面的知识分享给大家,希望大家会喜欢哦。
四格表资料检验
四格表资料的卡方检验用于进行两个率或两个构成比的比较。
(资料图片仅供参考)
专用公式:
转科载或者历引进用本文内容请注明农来源于芝记士回答
若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),
自由度v=(行数-1)(列数-1)
而十实革议深往斯满局照。
列联表资料检验
同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。
之里还重接论南六带车况毛按。
R*C 列联表的卡方检验:
R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。
2*2列联表的卡方检验:
2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。
如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。
列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。
行×列表资料检验
行×列表资料的卡方检验用于多个率或多个构成比的比较。
专用公式:
r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1]
应用条件:
要求每个格子中的理论频数T均大于5或1
列联表资料检验
同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。
R*C 列联表的卡方检验:
R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。
2*2列联表的卡方检验:
2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。
当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。
如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。
列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。
为什么从正态总体中抽取出的样本的方差服从χ2分布
在抽样分布理论一节里讲到,从正态总体进行一次抽样就相当于独立同分布的 n 个正态随机变量ξ1,ξ2,…,ξn的一次取值。
将 n 个随机变量针对总体均值与方差进行标准化得(i=1,…,n),显然每个都是服从标准正态分布的,因此按照χ2分布的定义,应该服从参数为 n 的χ2分布。
如果将中的总体均值 μ 用样本平均数 ξ 代替,即得,它是否也服从χ2分布呢?理论上可以证明,它是服从χ2分布的,但是参数不是 n 而是 n-1 了,究其原因在于它是 n-1 个独立同分布于标准正态分布的随机变量的平方和
扩展资料
卡方检验的统计量是卡方值,它是每个格子实际频数A与理论频数T差值平方与理论频数之比的累计和。每个格子中的理论频数T是在假定两组的发癌率相等(均等于两组合计的发癌率)的情况下计算出来的。
如第一行第一列的理论频数为71*(91/113)=518,故卡方值越大,说明实际频数与理论频数的差别越明显,两组发癌率不同的可能性越大。
本文到此结束,希望对大家有所帮助。